skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vatsyayan, Ritwik"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report a new physics-based model for dual-gate amorphous-indium gallium zinc oxide (a-IGZO) thin film transistors (TFTs) which we developed and fine-tuned through experimental implementation and benchtop characterization.We fabricated and characterized a variety of test patterns, including a-IGZO TFTs with varying gate widths (100–1000 μm) and channel lengths (5–50 μm), transmission-line-measurement patterns and ground–signal–ground (GSG) radio frequency (RF) patterns. We modeled the contact resistance as a function of bias, channel area, and temperature, and captured all operating regimes, used physics-based modeling adjusted for empirical data to capture the TFT characteristics including ambipolar subthreshold currents, graded interbias-regime current changes, threshold and flat-band voltages, the interface trap density, the gate leakage currents, the noise, and the relevant small signal parameters. To design high-precision circuits for biosensing, we validated the dc, small signal, and noise characteristics of the model. We simulated and fabricated a two-stage common source amplifier circuit with a common drain output buffer and compared the measured and simulated gain and phase performance, finding an excellent fit over a frequency range spanning 10 kHz–10 MHz. 
    more » « less
  2. Electrophysiological stimulation has been widely adopted for clinical diagnostic and therapeutic treatments for modulation of neuronal activity. Safety is a primary concern in an interventional design leveraging the effects of electrical charge injection into tissue in the proximity of target neurons. While modalities of tissue damage during stimulation have been extensively investigated for specific electrode geometries and stimulation paradigms, a comprehensive model that can predict the electrochemical safety limits in vivo doesn’t yet exist. Here we develop a model that accounts for the electrode geometry, inter-electrode separation, material, and stimulation paradigm in predicting safe current injection limits. We performed a parametric investigation of the stimulation limits in both benchtop and in vivo setups for flexible microelectrode arrays with low impedance, high geometric surface area platinum nanorods and PEDOT:PSS, and higher impedance, planar platinum contacts. We benchmark our findings against standard clinical electrocorticography and depth electrodes. Using four, three and two contact electrochemical impedance measurements and comprehensive circuit models derived from these measurements, we developed a more accurate, clinically relevant and predictive model for the electrochemical interface potential. For each electrode configuration, we experimentally determined the geometric correction factors that dictate geometry-enforced current spreading effects. We also determined the electrolysis window from cyclic-voltammetry measurements which allowed us to calculate stimulation current safety limits from voltage transient measurements. From parametric benchtop electrochemical measurements and analyses for different electrode types, we created a predictive equation for the cathodal excitation measured at the electrode interface as a function of the electrode dimensions, geometric factor, material and stimulation paradigm. We validated the accuracy of our equation in vivo and compared the experimentally determined safety limits to clinically used stimulation protocols. Our new model overcomes the design limitations of Shannon’s equation and applies to macro- and micro-electrodes at different density or separation of contacts, captures the breakdown of charge-density based approaches at long stimulation pulse widths, and invokes appropriate power exponents to current, pulse width, and material/electrode-dependent impedance. 
    more » « less
  3. Abstract Durable and conductive interfaces that enable chronic and high‐resolution recording of neural activity are essential for understanding and treating neurodegenerative disorders. These chronic implants require long‐term stability and small contact areas. Consequently, they are often coated with a blend of conductive polymers and are crosslinked to enhance durability despite the potentially deleterious effect of crosslinking on the mechanical and electrical properties. Here the grafting of the poly(3,4 ethylenedioxythiophene) scaffold, poly(styrenesulfonate)‐b‐poly(poly(ethylene glycol) methyl ether methacrylate block copolymer brush to gold, in a controlled and tunable manner, by surface‐initiated atom‐transfer radical polymerization (SI‐ATRP) is described. This “block‐brush” provides high volumetric capacitance (120 F cm─3), strong adhesion to the metal (4 h ultrasonication), improved surface hydrophilicity, and stability against 10 000 charge–discharge voltage sweeps on a multiarray neural electrode. In addition, the block‐brush film showed 33% improved stability against current pulsing. This approach can open numerous avenues for exploring specialized polymer brushes for bioelectronics research and application. 
    more » « less
  4. Abstract Intracellular access with high spatiotemporal resolution can enhance the understanding of how neurons or cardiomyocytes regulate and orchestrate network activity and how this activity can be affected with pharmacology or other interventional modalities. Nanoscale devices often employ electroporation to transiently permeate the cell membrane and record intracellular potentials, which tend to decrease rapidly with time. Here, one reports innovative scalable, vertical, ultrasharp nanowire arrays that are individually addressable to enable long‐term, native recordings of intracellular potentials. One reports electrophysiological recordings that are indicative of intracellular access from 3D tissue‐like networks of neurons and cardiomyocytes across recording days and that do not decrease to extracellular amplitudes for the duration of the recording of several minutes. The findings are validated with cross‐sectional microscopy, pharmacology, and electrical interventions. The experiments and simulations demonstrate that the individual electrical addressability of nanowires is necessary for high‐fidelity intracellular electrophysiological recordings. This study advances the understanding of and control over high‐quality multichannel intracellular recordings and paves the way toward predictive, high‐throughput, and low‐cost electrophysiological drug screening platforms. 
    more » « less